Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 16496, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192436

RESUMO

Swelling of epidermal cell walls decreases cell-to-cell adhesion and increases cracking susceptibility in sweet cherry. Ca is suggested to decrease cracking susceptibility by crosslinking of cell wall components and, possibly, by decreasing swelling. The objective is to test this hypothesis. The effect of Ca on swelling of anticlinal epidermal cell walls was quantified microscopically in vivo using excised skin sections and in vitro using extracted cell walls. After removal of turgor, cell wall thickness increased. Incubation in CaCl2 decreased cell wall thickness up to 3 mM CaCl2. At higher concentrations thickness remained constant. Decreased cell wall swelling in vivo also occurred with other salts of divalent and trivalent cations, but not with those of monovalent cations. Decreased swelling was due to the Ca cation, the anions had no effect. Ca also decreased swelling of cell walls that were already swollen. CaCl2 also decreased swelling of extracted cell walls in vitro. There was no effect on swelling pressure. The effect on swelling increased as the CaCl2 concentration increased. Chlorides of divalent and trivalent cations, but not those of monovalent cations decreased swelling in vitro. The decrease in swelling among the divalent cations was linearly related to the radius of the cation. The results indicate that Ca decreases cracking susceptibility by decreasing swelling.


Assuntos
Prunus avium , Cálcio/metabolismo , Cloreto de Cálcio/metabolismo , Cloreto de Cálcio/farmacologia , Cálcio da Dieta/metabolismo , Cátions Bivalentes/metabolismo , Cátions Monovalentes/metabolismo , Parede Celular , Frutas/metabolismo , Sais/farmacologia
2.
PLoS One ; 16(2): e0247692, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606853

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0219794.].

3.
Planta ; 252(6): 96, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33141346

RESUMO

MAIN CONCLUSION: During fruit development, cell wall deposition rate decreases and cell wall swelling increases. The cell wall swelling pressure is very low relative to the fruit's highly negative osmotic potential. Rain cracking of sweet cherry fruit is preceded by the swelling of the cell walls. Cell wall swelling decreases both the cell: cell adhesion and the cell wall fracture force. Rain cracking susceptibility increases during fruit development. The objectives were to relate developmental changes in cell wall swelling to compositional changes taking place in the cell wall. During fruit development, total mass of cell wall, of pectins and of hemicelluloses increases, but total mass of cellulose remains constant. The mass of these cell wall fractions increases at a lower rate than the fruit fresh mass-particularly during stage II and early stage III. During stage III, on a whole-fruit basis, the HCl-soluble pectin fraction, followed by the water-soluble pectin fraction, the NaOH-soluble pectin fraction and the oxalate-soluble pectin fraction all increase. At maturity, just the HCl-soluble pectin decreases. Cell wall swelling increases during stages I and II of fruit development, with little change thereafter. This was indexed by light microscopy of skin sections following turgor release, and by determinations of the swelling capacity, water holding capacity and water retention capacity. The increase in cell wall swelling during development was due primarily to increases in NaOH-soluble pectins. The in vitro swelling of cell wall extracts depends on the applied pressure. The swelling pressure of the alcohol-insoluble residue is low throughout development and surprisingly similar across different cell wall fractions. Thus, swelling pressure does not contribute significantly to fruit water potential.


Assuntos
Parede Celular , Frutas , Prunus avium , Parede Celular/química , Parede Celular/metabolismo , Celulose/metabolismo , Frutas/química , Frutas/metabolismo , Pressão Osmótica , Pectinas/metabolismo , Prunus avium/crescimento & desenvolvimento
4.
Planta ; 251(3): 65, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060652

RESUMO

MAIN CONCLUSION: Swelling of sweet cherry cell walls is a physical process counterbalanced by turgor. Cell turgor prevents swelling in intact cells, whereas loss of turgor allows cell walls to swell. Swelling of epidermal cell walls precedes skin failure in sweet cherry (Prunus avium) cracking. Swollen cell walls lead to diminished cell:cell adhesions. We identify the mechanism of cell wall swelling. Swelling was quantified microscopically on epidermal sections following freeze/thaw treatment or by determining swelling pressure or swelling capacity of cell wall extracts. Releasing turgor by a freeze/thaw treatment increased cell wall thickness 1.6-fold within 2 h. Pressurizing cell wall extracts at > 12 kPa prevented swelling in water, while releasing the pressure increased swelling. The effect was fully reversible. Across cultivars, cell wall thickness before and after turgor release in two subsequent seasons was significantly correlated (before release of turgor: r = 0.71**, n = 14; after release of turgor: r = 0.73**, n = 14) as was the swelling of cell walls upon turgor release (r = 0.71**, n = 14). Close relationships were also identified for cell wall thickness of fruit of the same cultivars grown in the greenhouse and the field (before release of turgor: r = 0.60, n = 10; after release of turgor: r = 0.78**, n = 10). Release of turgor by heating, plasmolysis, incubation in solvents or surfactants resulted in similar swelling (range 2.0-3.1 µm). Cell wall swelling increased from 1.4 to 3.0 µm as pH increased from pH 2.0 to 5.0 but remained nearly constant between pH 5.0 and 8.0. Increasing ethanol concentration decreased swelling. Swelling of sweet cherry cell walls is a physical process counterbalanced by turgor.


Assuntos
Parede Celular/metabolismo , Frutas/citologia , Prunus avium/citologia , Parede Celular/efeitos dos fármacos , Frutas/efeitos dos fármacos , Sucos de Frutas e Vegetais , Concentração de Íons de Hidrogênio , Osmose , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Pressão , Prunus avium/efeitos dos fármacos , Sacarose/farmacologia , Fatores de Tempo
5.
PLoS One ; 14(7): e0219794, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31365556

RESUMO

Rain cracking severely affects the commercial production of many fleshy-fruit species, including of sweet cherries. The objectives were to investigate how the gaping macroscopic cracks (macrocracks) of a rain-cracked fruit can develop from microscopic cracks in the cuticle (microcracks). Incubating fruit in deionized water is well known to cause significant macrocracking. We found that after a lag phase of 2 h, the numbers and lengths of macrocracks increased. Macrocrack number approached an asymptote at 12 h, whereas macrocrack length continued to increase. The rate of macrocrack propagation (extension at the crack tip) was initially 10.8 mm h-1 but then decreased to a near-constant 0.5 mm h-1. Light microscopy revealed three characteristic zones along a developing macrocrack. In zone I (ahead of the crack), the cuticle was intact, the epidermal cells were unbroken and their cell walls were thin. In zone II, the cuticle was fractured, the first epidermal cells died and their cell walls began to thicken (swell). In zone III, most epidermal cells had died, their cell walls were swollen and cell:cell separation began along the middle lamellae. The thickness of the anticlinal epidermal cell walls and the percentage of intact living cells along a crack were closely and negatively related. Cracks were stained by calcofluor white, but there was no binding of monoclonal antibodies (mAbs) specific for hemicelluloses (LM11, LM21, LM25). Strong binding was obtained with the anti-homogalacturonan mAb (LM19), indicating the presence of unesterified homogalacturonans on the crack surface. We conclude that macrocrack propagation is related to cell death and to cell wall swelling. Cell wall swelling weakens the cell:cell adhesion between neighbouring epidermal cells, which separate along their middle lamellae. The skin macrocrack propagates like a 'run' in a fine, knitted fabric.


Assuntos
Frutas/metabolismo , Prunus avium/metabolismo , Parede Celular/ultraestrutura , Qualidade dos Alimentos , Frutas/ultraestrutura , Imuno-Histoquímica , Microscopia , Prunus avium/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...